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I Question for data providers
• “How much privacy loss must be incurred to increase

accuracy”

I Answer: Differential privacy
• Privacy loss measured by parameter ε
• Formal proofs yield marginal cost of privacy

• . . . in foregone accuracy
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This study

I Can existing methods be applied to generate interesting
DP synthetic data?

I Are the resulting synthetic data useful?

I What is the actual cost of increasing privacy?
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Roadmap

I Application: Data on job-to-job transitions
• by employer-specific wage premium
• and residual wages
• from Brazil (RAIS)

I Generate DP synthetic data using
• Multiplicative Weights - Exponential Mechanism (MWEM)

algorithm (Hardt et al. 2012)
• ε-differentially private
• formal accuracy guarantee

I Results:
• Empirical accuracy far superior to theoretical guarantee
• Synthetic data effective for training queries
• pretty poor out of sample
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Data
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Longitudinal employer-employee data for Brazil

I Relação Anual de Informações Sociais (RAIS)

I years 2003–2010

I collected from plant managers for program administration

I covers all formal-sector jobs ( 50 million per year)
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Longitudinal employer-employee data for Brazil

data items all reported by employer:

I job characteristics:
• wage, hours, occupation, date of hire

I plant characteristics: industry, size, location ...

I worker characteristics: age, education, race, sex ...

Full Data:
I All RAIS jobs in plants with more than 1 employee
I 358,894,761 job-year observations
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Earnings Decomposition

lnwit = xitβ + θi + ψG(i,t) + εit

I lnwit, is the log hourly wage
I xit are observed time-varying controls: experience and

year effects
I indicator function G(i, t) = g if worker i was employed in
g in year t

I ψG(i,t) measures unobserved employer-specific
determinants of compensation

I θi captures unobserved worker-specific determinants of
compensation
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Summary of the components of log wage

Correlation

Mean Std. Dev. Log Wage Xβ θ ψ ε

Log Wage 1.30 0.760 1
Time-varying characteristics 1.30 0.377 0.243 1
Worker effect −0.00 0.502 0.599 −0.476 1
Estab.-Occup. effect −0.00 0.397 0.800 0.118 0.333 1
Residual 0.00 0.196 0.258 −0.000 0.000 0.000 1
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Analysis of Job Mobility

I Compute average residual on each job
• “match effect”

I Restrict sample to observations with a job change
I Discretize employer effects to deciles
I Five percent simple random sample
I Final dataset has three categorical variables

• origin employer type (10 deciles, plus non-employment)
• destination employer type (10 deciles)
• match type (10 deciles)

I Domain D has cardinality |D|=1,100.
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Job-to-Job Mobility: True Data
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Job-to-Job Mobility: True Data
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Methods

13



Databases, Histograms, and Queries

I B database held by custodian with n entries
I each entry is iid draw from (discrete, finite) domain
D = D1 × . . .×DK

I H is a histogram representing B, H ∈ R|D|
I Queries

• A linear query is any database query that can be
represented by a vector in R|D|

• Query answer: a(q) = q′H
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Differential Privacy

Definition
(Differential Privacy) Let M be a random mechanism that
maps histograms, H , to distributions over an output space, R.

M provides ε-differential privacy if
I for every S ⊂ R, and
I for all histograms H and K where ||H −K|| ≤ 1

Pr[M(H) ∈ S] ≤ exp(ε) Pr[M(K) ∈ S].

That is:
Pr[M(H) ∈ S]
Pr[M(K) ∈ S]

≤ exp(ε) (1)
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MWEM Mechanism – Hardt, Ligett, McSherry 2012
(NIPS)

Algorithm Multiplicative Weights Exponential Mechanism
Input: Data set, H , over a universe, D; a set Q of linear

queries; total number of iterations T ∈ N ; privacy
parameter ε > 0. The number of records in H is n.

1. Initialize the synthetic histogram, K0, as n times the
uniform distribution.

2. for t← 1 to T
3. Exponential Mechanism Step: Select a query, qt ∈ Q

using the Exponential Mechanism parameterized
with ε/2T and score function

st(H, q) = |q′Kt−1 − q′H| (2)
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MWEM Mechanism – Hardt, Ligett, McSherry 2012
(NIPS) II

4. Laplace Mechanism: Set measurement
mt = q′tH + Lap(2T/ε).

5. Multiplicative Weights Step: Let Kt be n times the
distribution whose entries satisfy

Kt ∝ Kt−1 × exp(qt ×
(
mt − q′tKt−1

)
/2n) (3)

6. Output: K as the simple average across all Kt for t < T .
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Theoretical Guarantees

Theorem
The MWEM satisfies ε-differential privacy.

Theorem
Given any dataset, H , with n records, together with a set of queries,
Q, number of iterations T , and ε > 0, with probability at least
q − 2T/|Q|, MWEM produces synthetic histogram K that satisfies

maxq∈Q|q′H − q′K| ≤ 2n

√
log|D|
T

+
10T log|Q|

ε
. (4)
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Evaluation
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Evaluation Protocol

I Query set, Q: all first, second, third-order marginals
I Iterations, T : 300
I Replications: 3
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Maximum Error
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KL Divergence
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Synthetic Job-to-Job Transitions
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True Job-to-Job Transitions
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Synthetic Job-to-Job Transitions
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True Job-to-Job Transitions
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Average Residual by Transition Cell: True Data
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Average Residual by Transition Cell: True Data
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Average Residual by Transition Cell: Synthetic Data

‐0.005

‐0.004

‐0.003

‐0.002

‐0.001

0

0.001

0.002

0.003

0.004

0.005

0.006

1 2 3 4 5 6 7 8 9 10

Origin: Decile 1

(c) Origin Employer Decile 1

‐0.005

‐0.004

‐0.003

‐0.002

‐0.001

0

0.001

0.002

0.003

0.004

0.005

0.006

1 2 3 4 5 6 7 8 9 10

Origin: Decile 5

(d) Origin Employer Decile 5

29


	Introduction
	Data
	Methods
	Evaluation

