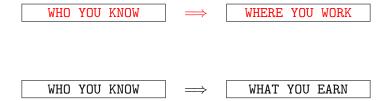
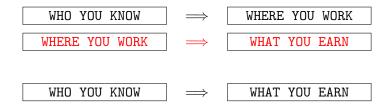
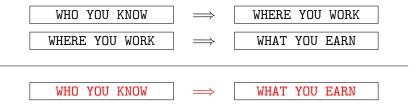
Job Referral Networks and the Determination of Earnings in Local Labor Markets

lan M. Schmutte


Department of Economics, University of Georgia


DePaul University Department of Economics June 3, 2012


Disclaimer

This research uses data from the Census Bureau's Longitudinal Employer Household Dynamics Program, which was partially supported by the National Science Foundation Grants SES-9978093, SES-0339191 and ITR-0427889; National Institute on Aging Grant AG018854; and grants from the Alfred P. Sloan Foundation. Any opinions and conclusions expressed herein are those of the author and do not necessarily represent the views of the U.S. Census Bureau,its program sponsors or data providers, or of Cornell University. All results have been reviewed to ensure that no confidential information is disclosed.

WHO YOU KNOW \implies WHAT YOU EARN

1 Search Model with Contagion 2 Two Stage Estimation

1 Search Model with Contagion

• Employer affects earnings

2 Two Stage Estimation

2

Two Stage Estimation

1 Search Model with Contagion

- Employer affects earnings
- Referral network affects job offers

1 Search Model with Contagion

- Employer affects earnings
- · Referral network affects job offers

2 Two Stage Estimation

• Estim. employer wage premia, ψ

1 Search Model with Contagion

- Employer affects earnings
- Referral network affects job offers

2 Two Stage Estimation

- Estim. employer wage premia, ψ
- Study effect of nbrs' wage premium on the wage premium received when workers change jobs.

Results Preview

1 Confirm predictions of job search model

- 10% of offers through networks.
- A 1 s.d. increase in network quality increases ψ by 25% for job changers.
- Higher network quality increases probability of job-to-job transition.
- Better networks 'stretch' the realized ψ distribution.
- Better starting job 'compresses' the realized ψ distribution.
- 2 Evidence on Model Assumptions and Interpretation
 - Job ladder over measured earnings premia
 - Lots of sorting into neighborhoods. Very little sorting within neighborhoods
 - Evidence on direct referrals within neighborhoods.

Contributions

- Evidence that local social interactions affect earnings by helping workers find better paying jobs
- Clean identification strategy.
- In context of an on-the-job search model.

Contributions and Related Literature

1 Models of social interactions in job search

- Mortensen and Vishwanath (1994); Calvo-Armengol and Jackson (2004,2007) Fontaine (2007); Calvo-Armengol and Zenou (2005); Galenianos (2011); Loury(1983)
- **2** Empirical Literature:
 - **Unemployment:** Topa (2001); Conley and Topa (2008); Cingano and Rosolia (2012)
 - "Where You Work": Bayer, Ross, and Topa (2008); Hellerstein et al. (2011); Dustmann et al. (2012)
 - Local Spillovers in Labor Market Behavior and Outcomes: Case and Katz (1991); Weinberg et al. (2004)
- Models of Referral-use by employers: Montgomery (1991); Kugler (2003); Simon and Warner (2012); Dustmann et al. (2012); Galenianos (2012); Heath (2013)

Contributions and Related Literature

Bayer, Ross, and Topa (2008)

- Evidence of local interations in job finding
- People in the same block are more likely to be coworkers than people in the same neighborhood on different blocks

I show...

- Workers changing jobs more likely to become coworker of someone on same block than someone in the same neighborhood but different block
- This effect is stronger when the worker changing jobs is of higher ability and when neighbor is in a higher paying firm.

The Rest of the Talk

1 Methodology

- Data
- Motivational Framework
- Two Stage Estimation
- Identification Strategy
- 2 Evidence for Model Assumptions
 - Evidence that workers search for firms with better earnings premia
 - Support for identifying assumption
 - Evidence on direct referrals
- 3 Main Results
 - · Verify implications of the job search model
 - Sensitivity to violations of identifying assumptions
 - · robustness checks based on previous research
 - How much of the effect is due to direct referral
 - Results for non-employed workers
 - Agglomeration effects

4 Conclude

Data: LEHD Infrastructure

- Employer-employee matched data
- Source: Administrative data from Unemployment Insurance programs
 - 98% of all private non-farm employment
 - UI record provides employer ID, employee ID, and quarterly earnings
- Individual and Employer Characteristics linked from other sources
 - race, ethnicity, gender, age, place of birth, work history
 - Industry, size

Data: Research File

- LEHD data from 30 states, 1990–2003
- Workers aged 18-70
- employed full time on dominant jobs
- 660 million wage records
- 190 million workers
- 10 million employers

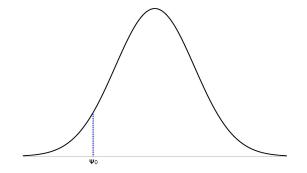
Data: Estimation File

- Match to administrative data on Census block of residence
- Workers with positive UI earnings in 2002-2003
- Lived in one of 30 large MSAs
- Identify quarter of transition between dominant jobs

Wage Setting

- I workers with human capital eit
- Continuum of employers with heterogeneous compensation *p_j*

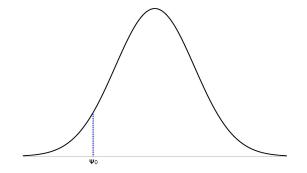
Pay depends on e_{it} and p_j as follows:


$$w_{ijt} = \kappa e_{it} p_j$$

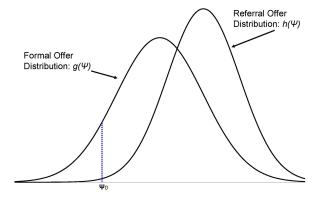
$$\ln w_{ijt} = \ln \kappa + \ln e_{i,t} + \ln p_j$$

In anticipation of the empirical analysis,

$$e_{it} = \exp(X_{it}\beta + \theta_i)$$
; $\psi_j = \ln p_j$.

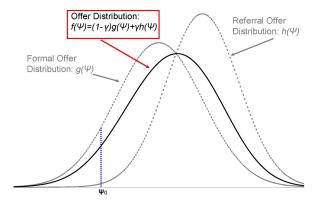

$$\ln w_{ijt} = \alpha + X_{it}\beta + \theta_i + \psi_j$$

Search and The Job Offer Distribution


OFFER : In
$$w_{it} = \alpha + X_{it}\beta + \theta_i + \square$$

ACTUAL: In $w_{it} = \alpha + X_{it}\beta + \theta_i + \psi_{0,i}$

Search and The Job Offer Distribution


OFFER : In
$$w_{it} = \alpha + X_{it}\beta + \theta_i + \lfloor \psi^* \rfloor$$

ACTUAL: In $w_{it} = \alpha + X_{it}\beta + \theta_i + \psi_{0,i}$

Referral Networks in Job Offer Distribution

 γ : the weight on referral use relative to formal search

Referral Networks in Job Offer Distribution

 γ : the weight on referral use relative to formal search

Model Implications: Predictions of the Search Model

For workers making direct job-to-job transitions

1 Conditional Mean:

 $\mathsf{E}(\psi|ar{\psi}, Z, \psi > \psi_0)$ is increasing in $ar{\psi}$

2 Quantiles:

 $Q(\psi|\bar{\psi}, Z, \psi > \psi_0)$ is increasing in ψ_0 and $\bar{\psi}$.

3 The above effects are

- decreasing across quantiles for an increase in ψ_0 ;
- increasing across quantiles for an increase in $\bar{\psi}$.
- 4 The probability of a job-to-job transition is
 - increasing in $\bar{\psi}$;
 - decreasing in ψ_0 (job ladder).

Contagion Model of the Referral Offer Distribution

- · Wage premia of neighbors are 'contagious'
- Draw ψ with probability proportional to frequency of network partners holding ψ .
- Interpretations:
 - Get a job with neighbor's employer;
 - friends share information on search strategies (Dolnick 2011);
 - friends pass on rejected job offers (Calvo-Armengol and Jackson (2007).

Two Stage Estimation

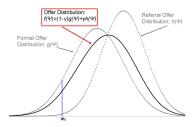
- **1** Estimate ψ from earnings decomposition (details below)
- estimate using data for workers who experience a job-to-job transition models of the form:

$$\psi_{i} = Z_{i} \Pi + \gamma \bar{\psi}_{b(i)} + \beta \psi_{0i} + \kappa_{G(i)} + \varepsilon_{i}$$

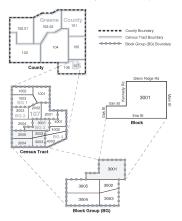
Estimation of ψ

Estimate ψ from the Abowd-Kramarz-Margolis decomposition

$$\ln W = X\beta + D\theta + F\psi + \epsilon$$


- Data: LEHD earnings histories
- D is the design matrix of person effects
- F is the design matrix of employer effects
- X includes time-varying factors
 - experience quartic
 - year effects
 - within-year employment history

Identification of the social interaction parameter, γ


Expected Offer:

$$\psi_{J(i)}^* = Z_i \Pi + \gamma \bar{\psi}_{0b(i)} + \eta_i$$

- Simultaneity: the reflection problem
- Self-selection: sorting
- Omitted variables

Identification using Small Area Census Geography

Geographic Relationships – Small Area Statistical Entities County-Census Tract-Block Group-Block

Figure 5: Evidence of a Job Ladder

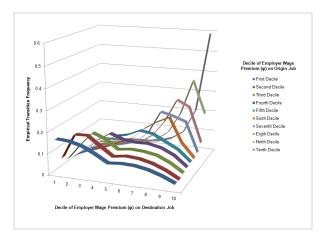


Figure: Probabilities of transition between deciles of the employer wage premium (ψ) distribution.

Figure 4: Evidence of a Job Ladder

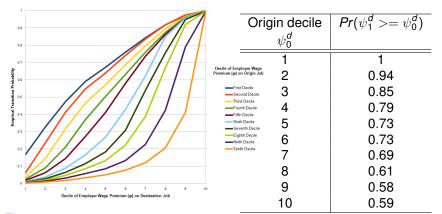
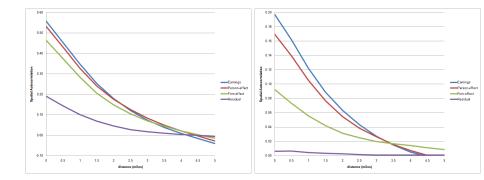



Figure: Cumulative probability transition to each decile of the wage premium (ψ) distribution, by decile of origin ψ

Figures 2 and 3: Spatial Autocorrelation of AKM Wage Components

Spatial autocorrelation function for tract-(left) and block-(right) means of log earnings and its components.

Table III: Sorting within Neighborhoods

Variable	Raw	Block Group Controls				
White Hispanic Born U.S. Age ε	.2915 .2859 .2245 .0301 .0038	.0132 .0125 .0114 .0067 .0002				
N = 394, 305						

Effect of ψ on True Referrals

Question: Does ψ affect the probability of taking a job with neighbor's employer?

Data are pairs, (i, j) such that

- *i* changed jobs between 2002 and 2003.
- *j* remained in the same job.
- *i* and *j* reside in the same neighborhood (block group), *g*.
- 1,558,400,000 pairs in the sample

To infer the presence of referral effects, estimate

$$W_{ij} = \rho_g + \alpha_0 R_{ij} + \varepsilon_{ij},$$

where ρ_q is a block group effect and

 $W_{ij} = \begin{cases} 1 \text{ if } i \text{ has the same employer as } j \text{ in 2003,} \\ 0 \text{ otherwise.} \end{cases}$

$$R_{ij} = \begin{cases} 1 \text{ if } i \text{ resides on the same block as } j, \\ 0 \text{ otherwise.} \end{cases}$$

Table IV: 'True' Referrals

$$W_{\ell,m} = \rho_{G(\ell)} + \beta' X_{\ell,m} + (\alpha_0 + \alpha'_1 X_{\ell,m}) R_{\ell,m} + \varepsilon_{\ell,m}, \qquad (1)$$

		No Covariates (1)		Pair Covariates (2)		
	Variable	Coeff.	t-Stat.	Coeff.	t-Stat.	
Reside on same block	R	0.02	27.81	0.013	36.10	
Wage premium of non-changer	$R imes \psi_{ref}$			0.014	63.78	
Wage effect of non-changer	$R imes heta_{ref}$			0.023	46.73	
Wage effect of changer	R imes heta			0.018	33.47	
Block Group Effects		YES		YES		
Sample Size	1,558,436,893					

Table IV: 'True' Referrals

		No Cov	variates	With Co	variates
	Variable	Coeff.	t-Stat.	Coeff.	t-Stat.
		Panel A: Block Group Controls			
Reside on same block	R	0.026	23.85	0.146	5.56
AKM Wage effects	$R \times \theta \times \theta_{ref}$			0.040	3.28
Wage premium	$R \times \psi \times \psi_{ref}$			006	32
Interaction	$R \times \theta \times \psi_{ref}$			0.036	1.64
Both white	$R \times white \times white_{ref}$			0.014	4.3
Both male	$R \times male \times male_{ref}$			018	-5.56
Both native-born	$R \times nat \times nat_{ref}$			0.076	5.5
Both hispanic	$R \times hisp \times hisp_{ref}$			0.019	4.6
Age	R imes age $ imes$ age _{ref}			0.000	3.04
		Panel B: Individual Controls			
Reside on same block	R	0.029	38.37	0.108	11.30
AKM Wage effects	$R \times \theta \times \theta_{ref}$			0.028	4.2
Wage premium	$R imes \psi imes \psi_{ref}$			012	-1.42
Interaction	$R \times \theta \times \psi_{ref}$			0.029	2.5
Both white	$R \times white \times white_{ref}$			0.015	6.4
Both male	$R \times male \times male_{ref}$			018	-8.19
Both native-born	$R \times nat \times nat_{ref}$			0.052	9.6
Both hispanic	$R \times hisp \times hisp_{ref}$			0.022	7.29
Age	$R \times age \times age_{ref}$			0.000	3.8

Number of Obs.

1, 524, 733, 934

Variable	Full Sample	Quarterly Job Changers	Annual Job Changers
White	0.6572	0.6220	0.6495
Black	0.1151	0.1205	0.1129
Hispanic Origin	0.1167	0.1400	0.1274
Male	0.5098	0.4979	0.5886
Born in U.S.	0.8098	0.8026	0.8145
Age in 2002	40.5456	34.9561	37.0943
N	25,689,739	815,899	2, 189, 659

Table V: Main Offer Function Estimates

$$\psi_i = \gamma \bar{\psi}_{b(i)0} + Z_i \Pi + \beta \psi_{0i} + \kappa_{G(b(i))} + \bar{X}_{b(i)} \Gamma + \nu_i.$$

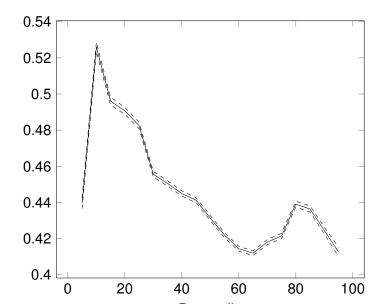
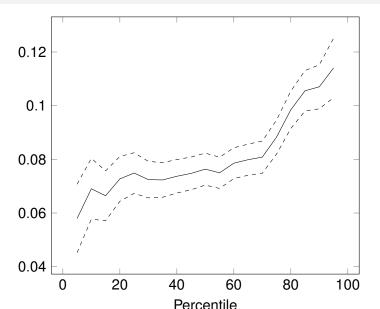

	(4)	(5)	(6)
Initial ψ : $\psi_0(\beta)$	0.46***	0.45***	0.45***
	(.001)	(.001)	(.001)
Avg. ψ in block:	0.34***	0.11***	0.11***
$\bar{\psi}_{block}(\gamma)$	(.003)	(.004)	(.004)
Avg. ψ in block group:		0.34***	
$\bar{\psi}_{bg}(\phi)$		(.005)	
white	00***	00***	01***
	(.001)	(.001)	(.001)
Hispanic origin	02***	02***	03***
	(.001)	(.001)	(.001)
male	0.03***	0.03***	0.03***
	(.000)	(.000)	(.000)
age in 2002	0.010***	0.01***	0.01***
	(.000)	(.000)	(.000)
square of age in 2002	00***	00***	00***
	(.000)	(.000)	(.000)
born in U.S.	0.00***	0.01***	0.01***
	(.001)	(.001)	(.001)
θ from wage eqn.	00	00***	—.01* ^{**}
	(.001)	(.001)	(.001)
block group controls	no	no	yes
R ²	.275	.305	.278
Ν		2, 198, 659	

Table VI: Main Offer Function – Sensitivity


$$\psi_i = \gamma \bar{\psi}_{b(i)0} + Z_i \Pi + \beta \psi_{0i} + \kappa_{G(b(i))} + \bar{X}_{b(i)} \Gamma + \nu_i.$$

	Baseline	Alteri	native Specific	ations
	(1)	(2)	(3)	(4)
Initial ψ : ψ_0 (β)	0.45***	0.45***	0.37***	0.36***
	(.001)	(.001)	(.001)	(.001)
Avg. ψ in block:	0.11***	0.09***	0.08***	0.08***
$\bar{\psi}_{block}(\gamma)$	(.004)	(.004)	(.004)	(.004)
frac. white on block		0.02***	0.02***	0.01***
		(.003)	(.003)	(.003)
frac. Hispanic on block		03***	03***	02**
		(.004)	(.004)	(.004)
frac. male on block		02***	02***	01**
		(.003)	(.003)	(.003)
avg. age on block		01**	01*	01
		(.003)	(.003)	(.003)
frac. native born on block		0.00***	0.00***	0.00***
		(.000)	(.000)	(.000)
avg. θ on block		0.06***	0.06***	0.06***
		(.002)	(.002)	(.002)
block group controls	yes	yes	yes	yes
Industry of origin job controls	no	no	yes	yes
MSA× initial industry controls	no	no	no	yes
R ²	.278	.305	.323	.334
N		2, 198,	659	

Figure 1a: Unconditional Quantial Partial Effects: Wage Premium on Origin Job

Figure 1b: Unconditional Quantial Partial Effects: Block Mean Wage Premium

Selection Correction

Premium on next job, ψ	Offer	Selection
Selection on job-to-job move	Function	Equation
Initial premium: ψ_0 (β)		-0.58*
		(.017)
Mean premium in block: $ar{\psi}_{\textit{block}}$ (γ)	0.11*	0.10*
	(.023)	(.020)
Mean premium in block group: $\overline{\psi}_{bq}$ (ϕ)	0.64*	0.32*
	(.060)	(.069)
λ (Inv. Mills)	0.48*	
	(.058)	
ρ	0.79	
σ	0.61	
N	1,330,475	
$\chi^2_{(9)}$	683.23	

Table VII: Demographic Heterogeneity in the Local Interaction Effect

Premium on next job, ψ	Baseline (1)	Native Workers (2)	Younger Workers (3)	Older Workers (4)
	. ,	. ,	()	
Initial ψ : ψ_0 (β)	0.37***	0.37***	.37***	0.37***
	(.001)	(.001)	(.001)	(.032)
Avg. ψ in block: $\overline{\psi}_{block}$ (γ)	0.08***	0.16***	.07***	0.09***
	(.004)	(.006)	(.004)	(.004)
Born in U.S. $ imes ar{\psi}_{block}$		09***		
2.001		(.005)		
Younger Worker $ imes ar{\psi}_{block}$		· · ·	.04***	
C DIOCK			(.004)	
Older Worker $ imes ar{\psi}_{block}$			()	04***
				(.005)
block group controls	yes	yes	yes	yes
block mean characteristics	yes	yes	yes	yes
Industry of origin job	yes	yes	yes	yes
	,	,	,	,00
Ν	2, 198, 659			
R ²	.323	.323	.323	.323

Table VIII: The Influence of Direct Referrals

Premium on next job, ψ	Baseline (1)	(2)	(3)	(4)
Initial ψ : $\psi_0(\beta)$	0.37***	0.37***	.37***	0.37***
	(.001)	(.001)	(.001)	(.001)
Avg. ψ in block: $\overline{\psi}_{block}$ (γ)	0.08***	()	.08***	0.08***
	(.004)		(.004)	(.004)
Move to same job (as a block-neighbor)	()	03***	03* ^{**}	07* ^{**}
, (č ,		(.001)	(.001)	(.002)
Move to same job $ imes ar{\psi}_{block}$		· · · ·	· · /	.18** [*]
				(.009)
block group controls	yes	yes	yes	yes
block mean characteristics	yes	yes	yes	yes
Industry of origin job	yes	yes	yes	yes
Ν	2, 198, 659			
R ²	.323	.323	.323	.323

Analysis for the Non-Employed "Job Finders"

Premium on next job, ψ	(1)	(2)	(3)	(4)
Avg. ψ in block:	0.23***	0.06***	0.04***	0.01
$\bar{\psi}_{block}$ (γ)	(.007)	(.010)	(.010)	(.006)
block group controls	no	yes	yes	yes
control for block mean characteristics	no	no	yes	yes
control for industry of destination job	no	no	no	yes
N	223, 159			
	.278	.305	.323	.334

Analysis for the Non-Employed "Job Finders"

Premium on next job, ψ	(1)	(2)	(3)	(4
Initial ψ : ψ_0 (β)	0.37***	0.38***	0.33***	0.32
	(.001)	(.001)	(.001)	(.00
Avg. ψ in block:	0.08***	0.08***	0.07***	0.0
$ar{\psi}_{m{block}}$ (γ)	(.004)	(.004)	(.003)	(.0
block group controls	yes	yes	yes	ye
block mean characteristics	yes	yes	yes	ye
Industry of origin job	yes	yes	yes	ye
Cubic in destination firm size	no	yes	no	n
Industry of destination job	no	no	yes	ye
MSA×Industry of desitination job	no	no	no	ye
Ν		2,19	8,659	
R ²	.323	.325	.430	.4

Conclusions

- First direct estimates of spillovers in earnings that control for arbitrary heterogeneity in ability and selection into neighborhoods.
- Even with these stringent controls, evidence that the wage premia of neighbors affect one's own search outcomes
- Search outcomes are consistent with the predictions of a simple partial equilibrium model augmented to include referral networks.
- Taken literally, model implies 10% of offers come through the social network.
- A 1 s.d. increase in $\bar{\psi}$ increases destination wage premium by 25% (about \$400 annually).
- Results of Bayer, Ross, and Topa (2008) can be extended in a number of directions
- Suggestive evidence that referrals and job information networks attract high-ability workers to high-paying firms.

Thank You Ian M. Schmutte